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vertical wavy wall and a parallel flat wall 
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Analyses of fluid flow over a wavy wall are of interest because of their applications 
to the physical problems mentioned in Q 1. The authors have therefore devoted their 
attention to the effect of waviness of one of the walls on the flow and heat-transfer 
characteristics of an incompressible viscous fluid confined between two long vertical 
walls and set in motion by a difference in the wall temperatures. The equations 
governing the fluid flow and heat transfer have been solved subject to the relevant 
boundary conditions by assuming that the solution consists of two parts: a mean part 
and a disturbance or perturbed part. To obtain the perturbed part of the solution 
use has been made of the long-wave approximation. The mean (zeroth-order) part of 
the solution has been found to be in good agreement with that of Ostrach (1952) after 
certain modifications resulting from the different non-dimensionalizations employed 
by Ostrach and the present authors respectively. The perturbed part of the solution 
is the contribution from the waviness of the wall. The zeroth-order, the first-order and 
the total solution of the problem have been evaluated numerically for several sets of 
values of the various parameters entering the problem. Certain qualitatively interesting 
properties of the flow and heat transfer, along with the changes in the fluid pressure 
on the wavy and flat wall, are recorded in $0 5 and 6. 

1. Introduction 
Viscous fluid flow over a wavy wall has attracted the attention of relatively few 

researchers although the analysis of such flows finds application in different areas such 
as transpiration cooling of re-entry vehicles and rocket boosters, cross-hatching on 
ablative surfaces and film vaporization in combustion chambers. In  view of these 
various applications, Lekoudis, Nayfeh & Saric (1976) have made a linear analysis of 
compressible boundary-layer flows over a wavy wall. Shankar & Sinha (1976) have 
made a detailed study of the Rayleigh problem for a wavy wall and arrived at certain 
interesting conclusions, namely that a t  low Reynolds numbers the waviness of the 
wall quickly ceases to be of importance as the liquid is dragged along by the wall, while 
at  large Reynolds numbers the effects of viscosity are confined to a thin layer close to 
the wall and the known potential solution emerges in time. Lessen & Gangwani (1976) 
have made a very interesting analysis of the effect of small amplitude wall waviness 
upon the stability of the laminar boundary layer. In  all these studies the authors have 
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taken the wavy wall to be oriented in a horizontal direction and studied the effect of 
the waviness on the flow field. 

So far as the present authors are aware, very little attention has been paid to the study 
of the free convective heat transfer in a viscous fluid flowing over a wavy wall or con- 
fined between two walls cne or both of which are wavy. The present authors have 
therefore attempted to tackle this complicated problem of physical interest and to 
throw light on the effect of the wavy wall on the flow and heat-transfer characteristics 
in the problem described in the title (the results for the case where both walls are wavy 
will be discussed in a separate paper). As the problem is highly complicated it has been 
solved by a linearization technique wherein the solut.ion is made up of two parts: 
a mean part corresponding to the fully developed mean flow and a small disturbance. 
It is worth mentioning here that the mean part of the solution coincides with that of 
Ostrach’s (1952) problem after modifications resulting from the different non- 
dimensionalizations used by Ostrach and the present authors respectively. It should 
be mentioned here that in obtaining the disturbance part of the solution the authors 
have used the long-wave approximation. Also, the authors have observed several 
interesting properties of the flow and heat-transfer characteristics (see 5 5 ) .  

2. Formulation and solution of the problem 
Consider the channel shown in figure 1, in which the X axis is taken vertically 

upwards and parallel to the flat wall while the Y axis is taken perpendicular to it in 
such a way that the wavy wall is represented by Y = E* cos KX and the flat wall by 
Y = d .  The wavy and flat walls are maintained at  constant temperatures of T, and TI 
respectively. We make the following assumptions: 

(i) that all the fluid properties are constant except the density in the buoyancy- 
force term; 

(ii) that the flow is laminar, steady and two-dimensional; 
(iii) that the viscous dissipation and the work done by pressure are sufficiently small 

(iv) that the volumetric heat source/sink term in the energy equation is constant; 
(v) that the wavelength of the wavy wall, which is proportional to 1/K, is large. 
Under these assumptions, the equations which govern steady two-dimensional flow 

and heat transfer in a viscous incompressible fluid occupying the channel shown in 
figure 1 are the momentum equations 

in comparison with both the heat flow by conduction and the wall temperatures; 

the continuity equation au/ax+av/aY = 0, (3) 

and the energy equation 

p C r , ( U g + V g )  = k($+g)+Q, (4) 

where U and V are the velocity components, P* is the pressure, pg, is the buoyancy 
t.erm in the X direction, Q is t)he constant heat a,ddition/absorption and the other 
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Y = O  Y = d  

FIGURE 1. Flow configuration. 

symbols have their usual meanings. The boundary conditions relevant to the problem 
are taken as 

( 5 )  I U =  0, V = 0, T = T, on Y =e*cosKX, 

U = O ,  V = O ,  T=T, on Y = d .  

We define the non-dimensional variables as 

x = X / d ,  y = Y / d ,  u = Ud/V ,  v = V d / v ,  

e = (T - T,)/(T, - q, P = P*/p (v /d )a ,  

where T, is the fluid temperature in static conditions, and with their help rewrite 
(1)-(4) and the boundary conditions (5) as 

u=O, v = O ,  8 =  1 on ~ = E C O S ~ X ,  

u=O, v = O ,  8 = m  on y = i ,  
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a = Qd2/k( T, - q), the non-dimensional heat-source/sink parameter, 

P = ,uC,/k, the Prandtl number, 

6 = s* /d ,  the non-dimensional amplitude parameter, 

h = Kd, the non-dimensional frequency parameter, 

m = (T, - %)/(Tw - %), the wall-temperature ratio. 

I n  the static fluid (subscript s) we have 

In view of ( 1 1 ), (6) becomes 

where (p -p,)/p = - P(T, - T,) 8 is the well-known Boussinesq approximation and 
G = d3g,P(T, - T , ) / v 2 ,  the Grashof number or free-convection parameter. By the 
method of perturbations let us take the flow field and the temperature field to be 

(13) 

where the perturbations u,, v,, Pl and 8, are small compared with the mean or the 
zeroth-order quantities. With the help of (13), equations (12) and (7)-(9) become 

1 U ( X , Y )  = U , ( Y ) + U l ( X , Y ) ,  4 X t Y )  = V l ( X , Y ) ,  

F(x ,  Y) = PO(4 +PAX, Y ) ,  y )  = 8,(y) + 81(x, y ) ,  

d2uo/dy2 + GO, = C,  d28,ldyz = - 01 (14) 

to zeroth order and 

to first order, where C = a(P,-<)/ax, and is taken equal to zero (see Ostrach 1952). 
With the help of (13) the boundary conditions (10) can be easily simplified to 

I u, = 0, 8, = 1 on y = 0, 

u, = 0, 8, = rn on y = 1, 

(20) 
u1 = -u& v1 = 0,  8, = -8; on y =  0, 

u, = 0,  ul = 0, 0, = 0 on y = 1, 

where a prime denotes differentiation with respect to y .  
Introducing the stream function T1 defined by 
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(from which we infer that (17) is satisfied identically) into (15), (16) and (18) and 
eliminating the non-dimensional pressure P,, we get 

and P ( U o 4 , x  + 31, x 0;) = 4. .cx + 4, YY* (23) 

Assuming y) = eiAx $(y)t 8 1 ( x 7  y) = eiAx t (y ) ,  (24) 
- 

from which we infer 
ul (x ,  y) = E eihz Ul(y), vl(x ,  y) = E eihz G1(y), 

and using (24) in (22) and (23), we get 

- ih[uO( - h2$ + $") + u," $1 - A2(2$-" - h2$) = Gt' (25) 

and t"--/\2t = Pih(u,t+ $e;). (26) 

Below we restrict our attention to the real parts of the solutions for the perturbed 
quantities O,, u1 and v1 and write the real part of a quantity F as Re F.  

The boundary conditions (20) can be now written in terms of $, as 

(27) 
a&/ay = u;, a & p X  = o on y = 0, 

ap:,/ay = 0, a&/ax = 0 on y = I .  

If we consider small values of h (or K < 1) then substituting 

$(A,  y) = c hi$i7 t(A, y) = c hit, (i = 0,1 ,2 ,  .. .) 
i i 

into (25), (26) and (27) gives, to order of h2, the following sets of ordinary differential 
equations and corresponding boundary conditions : 

$p = Gt,, t" = 0, (28) 

and 

elv + iu; $o - iu, $: = Gt;, 

t; = Pi(Uoto + $,e;), 

t; = Pi(Uotl+$18;)+t, 1 p2v = i ( ~ i  $l - u0 $';) - 2$," = Gti, 

$A =u;,  $,= 0, to = -0; on y =  0, 

& = O ,  $,=(I, t,=O on y =  1, 

Zeroth-order solution (mean part)  

The solutions for the zeroth-order velocity u, and the zeroth-order temperature 8, 
satisfying the differential equations (14) and the boundary conditions (19) have been 
obtained but are not presented here for the sake of brevity. The expressions for u, and 
0, at various values of y have been evaluated numerically for several sets of values of 
the parameters G, m and a. Some of the qualitatively interesting properties of u, and 
0, are presented in figures 2 and 3. 

'3 FLM 86 
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8kin friction and heat-transfer coeficient (Nusselt number) at the walls 

The shear stress T~~ at any point in the fluid is given by T~~ = p(aU/aY + aV/aX) .  In  
dimensionless form this becomes rxy = d2rx,/pv2 = au/ay + av/ax. At the wavy wall 
y = E cos Ax and at the flat wall y = 1, T ~ ? ,  becomes 

and 

T~ = 7:+Re [eeiAxug(0)+eeiAxul(O)] 

7, = 7: +Re [eeiAx iii( l)] 

(33) 

(34) 

respectively, where 70- O - u’(0)  o and 7: = uA(1). (35) 

In  a similar way the heat-transfer coefficient h is defined as h = - k BTIaY, phich 
in non-dimensional form becomes 

or l(36) 

At the wavy wall y = E cos Ax and the flat wall y = 1, (36) takes the forms 

Nu, = Nu: + Re [eeiAZ O:(O) + eeiASO;(O)] (37) 

and Nu,  = Nu: +Re [eefAzO;( l)] (38) 

respectively, where Nu: = &(O) and Nu; = @A( 1). (39) 

The expressions for T:, , and Nu:, , have been obtained from the zeroth-order 
solutions uo and Oo and have been evaluated numerically for several sets of values of 
the parameters G, m and a. It is clear that expressions (35) and (39) are the zeroth- 
order skin friction and zeroth-order heat-transfer coefficient a t  the walls and that 
their numerical values correspond physically to the behaviour of the flow and heat 
transfer a t  the walls in the case of a channel whose walls are both flat (Ostrach’s (1952) 
problem). 

3. Discussion of the zeroth-order solutions 
The results in figures 2-5 are naturally applicable to the case of a channel both of 

whose walls are flat; this problem was discussed by Ostrach (1952), both with and 
without the frictional heating terms taken into account. As the non-dimensionalization 
used by Ostrach is different from that used in the present analysis, it  is worth repeating 
here the salient features of the flow and heat-transfer characteristics to aid comparison 
of the present results with those for a flat-walled channel. 

We notice from the differential equations (14) that the non-dimensional (zeroth- 
order) temperature of the fluid is affected only by the heat-source parameter a and the 
wall-temperature ratio m and that the non-dimensional velocity of the fluid is affected 
by the free-convection parameter G in addition to the parameters a and m. 

The behaviour of the non-dimensional zeroth-order velocity u,, of the fluid with 
changes in the free-convection parameter G and the heat-source parameter a is 
depicted in figure 2(a )  for the case m = - 1 (physically, m = - 1 means that the 
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FIGURE 2. Dimensionless zeroth-order velocity profiles. (a) vn = - 1. ( 6 )  m = 2.  
I I1 I11 IV V VI 
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a - 5  0 5 - 5  0 5 

average of the temperatures of the two walls is equal to that of the static fluid) and in 
figure 2 ( b )  for m = 2 (wall temperatures unequal). From figure 2(a) ,  it  is clear that, 
with an increase in the free-convection parameter G, the magnitude of the fluid 
velocity uo increases across the entire channel width but the shape of the curve uovs. y 
remains unchanged in each case, including a = 0 (no heat sources or sinks, curves I1 
and V). Thus in the presence of heat sources (a > 0, curves I11 and VI) the fluid 
velocity increases across the channel width whenever the free-convection parameter 
G increases and this behaviour is reversed in the case of heat sinks (a c 0, curves I 
and IV).  On fixing G and varying a we observe that with an increase in the heat- 
source parameter a the fluid velocity increases considerably. 

From figure 2 ( b ) ,  it is obvious that for m = 2 the fluid velocity uo is enhanced by an 
increase in the free-convection parameter G for all values of a. Qualitatively similar 
behaviour of the fluid velocity occurs with an increase in a (curves I, 11, 111). The 
conclusions drawn for the fluid velocity in the case of unequal wall temperatures 
(m = 2) hold qualitatively €or the case of equal wall temperatures (m = l),  the  results 

13-2 
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FIUURE 3. Dimensionless zeroth-order temperature profiles. (a) m = - 1. ( b )  m = 2. 

for which are therefore not presented in the figures. Close examination of figures 2 (a) 
and ( b )  reveals that the fluid velocity can reverse its direction in the case m = - 1 while 
there is no such possibility when m > 0. Physically, this can be ascribed to the fact 
that, for m > 0, while the temperature of one wall exceeds that of the static fluid, the 
temperature of the other wall lies below that of the static fluid. 

The behaviour of the fluid temperature with changes in a is shown for m = - 1 in 
figure 3 (a) and for m = 2 in figure 3 (b ) .  From figure 3 (a) it is clear that in the absence 
of heat sources the fluid temperature 8, is a linearly decreasing function of y while in 
the presence of heat sources (a = 5 > 0) the temperature is parabolic in nature [see 
(14)], increasing from its value a t  the wall y = 0 to a maximum temperature at  around 
y = 0.1 and then decreasing steadily to its value a t  y = 1 .  I n  the presence of heat sinks 
(a = - 5  < 0)  the behaviour of the fluid temperature is the exact opposite of that 
observed in the case of heat sources (a > 0). From figure 3 ( b )  it  is clear that when 
m = 2 the fluid temperature So increases with a. I n  the absence of heat sources (a = 0) 
the fluid temperature increases linearly when m = 2 unlike the case m = - 1 ,  the results 
for a + 0 being the same. 
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FIQURE 4. Zeroth-order skin friction at y = 0 and y = 1. 
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-1oL 
FIGURE 5. Zeroth-order Nusselt numbers at y = 0 and y = 1.  

- , m  = - 1 ; - - - , m  = 1 .  

Figure 4 shows that the zeroth-order skin friction at  either wall is a linear function 
of the heat-source parameter a and that the skin friction at  the wall y = 0 increases 
with the heat-source parameter while the reverse is true at the other wall (y = 1). 
The skin friction a t  y = 0, in general, is an increasing function of the free-convection 
parameter G while that at  y = 1 decreases with an increase in C, this behaviour 
holding for any value of the wall-temperature ratio m. On fixing G and changing m we 
notice from figure 4 that the skin friction at  y = 0 increases with m while that at  the 
other wall decreases (I, 11, or 111, IV), a result qualitatively similar to the effect of G. 

The heat-transfer coefficient Nuo increases with increasing a at y = 0 and decreases 
a t  the other wall for all values of m (see figure 5 ) .  Also the rate of heat transfer at 
either wall increases with an increase in m. But its value at  y = 0 (y = 1)  generally 
changes sign from negative (positive) to positive (negative) when the heat-source 
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parameter takes higher and higher values (see figure 5) ,  a result physically equivalent 
to saying that heat can sometimes flow out of and at other times into either wall. 
Finally we mention that all the foregoing conclusions on the behaviour of the flow 
and heat-transfer characteristics agree qualit,atively with those of Ostrach ( 1952). 

4. Calculation of first-order quantities 
Velocities and temperature 

The sets of equations (28)-(30), subject to the boundary conditions (31) and (32), have 
been solved exactly for $j and t i  (i = 0,1,2).  The expressions 

2 2 

i = O  i = O  
$ = c t = hiti 

have been used along with (24) and (21) to calculate the expressions for the perturbed 
quant,ities ul,  vl and 8,, which after obvious simplificat,ions take the form 

(41) 

u1 = - ~ [ C O S  (Ax) 
v1 = - sA[sin (Ax) $r + cos (Ax) $J, 
81 = ~ [ c o s  (Ax) t, - sin (Ax) ti], 

- sin (Ax) $3 

where 

The expressions for u,, v, and 8, are called the first-order solutions or the disturbed 
parts. In  a similar way, from (13) the total (dimensionless) velocity field (u, v) and the 
total (dimensionless) temperature field 8 have been obtained but for the sake of 
brevity are not presented here. For several sets of values of the non-dimensional 
parameters G, A, m, a, E and P,  the expressions for (ul, v,, (u,  v, 8), the wall skin 
friction 7tc, , and the wall Nusselt number Nu,, , [see (33), (34), (37) and (38)] have been 
calculated numerically. Some of their interesting features are presented in figures 
6-11, 

Pressure drop 

We refer to (6) and (7) and obtain the fluid pressure P(x,  y)  (note that Po(x) = constant) 
at. any point (x, y) as 

i.e. (43) 

where L is an arbitrary constant and 

Z(y) = ($’” - A’$’) - iA(u0$’ - U ;  $) - Gt. 

Equation (43) can be rewritten as 

p = P(x,  y) - P(x ,  1) = ( € / A )  Re [i eiAx (Z(y) - Z( l)], (44) 

where p has been named the pressure drop since it indicates the difference between 
the pressure at any point, y in the flow field and that at  the flat wali, with x fixed. The 
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FIGURES 6 (a, b) .  For legend see next page. 

pressure drops P at Ax = 0 and &r have been named Po and P+, and their numerical 
values for several sets of values of the non-dimensional parameters G, A, m, 8, a, P and y 
have been evaluated and are presented in figure 12. In  what follows we record the 
qualitative differences in the behaviour of the various flow and heat-transfer charac- 
teristics which show clearly the effects of the wavy wall of the channel under 
consideration. 

5. Discussion of the first-order solution, the total solution and the pressure 

Figures 6 and 7 depict the behaviour of the perturbed (first-order solution) quantities 
ul, w1 and 8, when m = - 1 and when the Prandtl number is 0 . 7 1  and 7. From figure 6 (a) 
we observe that in the presence of heat sources the fluid velocity u1 increases steadily 
for a fixed y up to y = 0.55 approximately, i.e. in the fist half of the channel, while in 
the other half u1 is a decreasing function of y. We notice further that when a > 0 
(curves 111, V I  of figure 6a) an increase in the frequency parameter h increases the 

drop 
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FIGURE 6. Dimensionbw first-order velocity profiles. m = - 1. (a ) ,  (c) P = 0.71. ( b ) ,  ( d )  P = 7.  

I I1 111 1v V V I  V I I  VIII IX 
a 5 5 5 5 5 5 10 10 10 
h 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.01 
a - 5  0 5 - 5  0 5 - 5  0 5 

fluid velocity u1 in the first half of the channel considerably and that this behaviour is 
reversed when a < 0 (see curves 11, V and I, IV). This behaviour is reversed in the 
other half of the channel. It is worth mentioning that, in the first half of the channel, 
an increase in the free-convection parameter G tends to increase the fluid velocity u1 
significantly when the heat-source parameter a is positive or negative (111, IX and 
I, VII) while it decreases the fluid velocity u1 in the absence of heat sources (a = 0; 
11, VIII). However in the other half this behaviour of the fluid velocity u1 with G is 
reversed. All the above results hold qualitatively in the case of water (P = 7 ;  see 
figure 6 b )  as well as in the case of air ( P  = 0.71) but the magnitudes of the increases or 
decreases in the velocity u1 of air in figure 6 (a)  are changed considerably in the case of 
water. 

Figures 6 ( c )  and ( d )  show the behaviour of the fluid velocity v1 perpendicular to the 
channel length. From curves I, I1 and 111 in figure S ( c ) ,  we notice that as the heat- 
source parameter a is increased the velocity v1 diminishes sharply. Also, the effect of 
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FIGURE 7. Dimensionless first-order temperature profiles. m = - 
(a)  P = 0.71. (b )  P = 7. Curves as in figure 6. 

1. 

an increase in the frequency parameter h is to reduce the velocity v1 when a >, 0 and 
to enhance it whena < 0. We observe further from figure 6 ( c )  that the effect of the free- 
convection parameter G on the velocity v1 is qualitatively similar to that of the 
frequency parameter A. The above observations for the fluid velocity v1 hold quali- 
tatively in the case of water ( P  = 7)  as well as in the case of air ( P  = 0.71)  (compare 
figures 6 c,  d) .  

From figures 7 ( a )  and (b)  we can make out the behaviour of the fluid temperature 8, 
in the cases of air and water respectively. After a keen perusal of figures 7 (a) and (b)  
and comparing them with figures 6 ( c )  and ( d )  we arrive at  the striking conclusion that 
the variation with each of the parameters G, h and a of the fluid temperature el, be it 
for air or for water, resembles that of the velocity vl. 

Figures 8 (a) and ( b )  describe the behaviour of the total fluid velocity ?I ( = u,, + u,) 
when the wall temperature ratio m is - 1 and 2, respectively, in the case of air only. 
Increasing values of the heat-source parameter a enhance the total velocity u con- 
siderably both when m = - 1 and when m = 2. The effecte of the free-convection 
parameter G and the frequency parameter h on the total velocity u are very similar 
when m = - 1. Again, when m = - 1 and the heat-source parameter a is negative, the 
total velocity u is a decreasing function of both h and G while when a 2 0 it increases 
with both h and G. However when m = 2, the total velocity u is always an increasing 
function of both G and h for all values of a .  I t  is worth mentioning that of all the 
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FIGURE 8. Dimensionless velocity profiles. P = 0.71. (a) m = - 1. 
( b )  m = 2. Curves as in figure 6. 

parameters considered in the problem the effects of G and m on the fluid velocity u are 
the strongest. 

Figures 9(a)  and ( b )  show the behaviour of the total temperature for air when 
m = - 1 and 2 respectively. In  these figures the temperature 8 increases significantly 
with a. When m = - 1 the effect of an increase in G on the temperature 0 is to increase 
it when a < 0 and to diminish it when a > 0, the reverse being the case when m = 2. 
We notice further from figure 9 that the effect of the frequency parameter A on the 
fluid temperature 8 is qualitatively similar to that of the free-convection parameter G. 

Figure 10 shows the behaviour of the skin friction at the channel walls. When 
m = 1, the skin friction rW at the wavy wall increases with G, P, A and a, the increase 
with G being the greatest. This behaviour is reversed a t  the other wall. These con- 
clusions for m = 1 hold, more or less, in the case m = - 1 also. Figure 11 depicts the 
behaviour of the wall heat-transfer coefficient (the Nusselt number). When m = 1, 
the heat-transfer coefficient at the wavy wall increases with a, A, or P ,  and G, this 
increase being least significant for G and most significant for a, This behaviour is 
reversed a t  the flat wall. These conclusions for m = 1 hold, more or less, for the case 
m = - 1 too. Also, when the heat-source parameter a takes positive increasing values 
the heat-transfer coefficient at the wavy wall becomes positive and that at the other 
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FIGURE 9. Dimensionless temperature profiles. P = 0.71. (a) m = - 1. 
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FIGURE 11. Nusselt numbers at the walls. Curves as in figure 10. 
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FIGURES 12 (a, b ) .  For legend see facing page. 

wall negative, which means physically that heat flows into the walls only. However 
when the heat-source parameter 01 takes negative increasing values the heat-transfer 
coefficient at the wavy wall is negative and that a t  the other wall positive, which 
indicates physically that in this case heat flows from the walls into the fluid. These 
observations hold both when nz = - 1 and when m = 1. 
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FIGURE 12. Pressure-drop profiles. Curves I-IV as in figure 10. (a ) ,  ( b )  m = - 1 ; - --, a = - 5 ;  
-.-, u = 0;  --, u = 5 .  (c), ( d )  rrc. = 2;  ---, 01 = - 5 ;  __ , u = 5 .  

The behaviour of the pressure drops Po and sn at Ax = 0 and Ax = in are shown in 
figures 12 (a) and ( b )  form = - 1 and in figures 12 ( c )  and ( d )  for m = 2 .  When 01 =I= 0 the 
pressure drop Po decreases as G increases and increases with P and A, while when 
a = 0, Po is a decreasing function of G ,  A and P. We may mention, however, that the 
increase or decrease in Po with increasing h is almost insignificant. The circles in 
figure 12 (a )  indicate the changes in the fluid pressure on the wavy wall as compared 
with that on the flat wall. After a keen perusal of the curves in figure 12 (a)  we conclude 
that the fluid pressure on the wavy wall exceeds that on the flat wall only when 01 is 
positive and when P = 0.71, and that in all other cases considered the fluid pressure 
on the wavy wall falls below that on the flat wall. 

From figure 12(b) we see that the pressure drop p+, increases with G and A whether 
heat sources are present or not. The circles in figure 12 ( 6 )  show, as in figure 12 (a ) ,  the 
differences between the fluid pressure on the wavy wall and that on the flat wall. In 
figure 1 2 ( b ) ,  unlike figure 12(a), the fluid pressure on the wavy wall, in general, is 
negative except when a! is negative (a = -51, which means physically that, in this 
case only, the fluid pressure on the wavy wall exceeds tha.t, on the flat wall. 



382 K .  Vajravehc and K .  8. Sastri 

when m = 2. The effect of 
an increase in G, h or P is to decrease Po when a < 0 and vice versa when a > 0. Of the 
three parameters G, h and P, the effect of h on Po is the most significant. On looking 
closely at  figure 12 (c), we observe that when a is negative and the other parameters 
take higher values the fluid pressure on the wavy wall lies below that on the flat wall 
and that in all other cases this phenomenon is reversed. From figure 12 ( d )  we see that 
in general the pressure drop p4,, decreases significantly as either G or h increases and 
increases considerably with a. It is worth mentioning that in this figure we find the 
pressure drop on the wavy wall always to be negative, an indication that there is no 
chance for the fluid pressure 011 the wavy wall to exceed that on the flat wall. 

Figures 12(c) and ( d )  show the behaviour of Po and p 4: 

6.  Conclusions 
We summarize below some of the very interestsing properties of the flow and heat 

transfer in the probIeni under consideration. 
(i) Whether the Prandtl number is small or large, in the first half of the channel 

(0 < y < 0.55) the effect of an increase in the frequency parameter h on the first-order 
velocity u1 is to increase it significantly in the presence of heat sources (a > 0) and to 
diminish it considerably in either the absence of heat sources (a = 0) or the presence of 
heat sinks (a  < 0). This situation is reversed in the other half of the channel. The effect 
of the free-conrection parameter G on the first-order velocity u1 is qualitatively similar 
to that of the frequency parameter A. 

(ii) For all Prandtl numbers, the effect of an increase in the frequency parameter h 
is to diminish the fist-order velocity vl when a 2 0. The effect of the free-convection 
parameter G on the first-order fluid velocity v1 is again similar to that of A. 

(iii) The effect of each parameter (G ,  A ,  or P or a )  on the first-order fluid temperature 
8, is similar in nature to that on the fluid velocity v,. This result and (i) and (ii) also 
hold when the average of the wall temperatures equals the static temperature. 

(iv) When the wall temperatures are unequal (m = 2) the total fluid velocity u is 
always an increasing function of G and A for all valugs of a. When m = 2 ,  the total 
fluid temperature 8 decreases in the presence of heat sinks (a < 0) and increases 
signifioantly when a > 0 as the free-convection parameter G increases. This behaviour 
of 8 with G holds qualitatively, more or less, even when the frequency parameter h 
takes increasing values. 

(17) The skin friction at the wavy wall is an increasing function of G, P, A and a, the 
reverse behaviour occurring at the flat wall. Of all the parameters considered in 
the problem, the free-convection parameter G has the strongest effect on the skin 
friction. 

(vi) The behaviours of the heat-transfer coefficient at  the wavy wall and at the flat 
wall are qualitatively similar to those of the skin friction a t  the corresponding walls. 

(vii) When the average of the wall temperatures equals that of the static fluid 
(nz = - l) ,  the fluid pressure at  those points of the wavy wall which correspond to 
Ax = 0 exceeds that on the flat wall when P = 0.71  and heat sources are present, the 
reverse situation occurring in all other cases. When the wall temperatures are equal 
and a = - 5, the fluid pressure on the wavy wall always exceeds that on the flat wall. 

(viii) When m = 2 and Ax = in, there is no chance for the fluid presslire on the wavy 
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wall to exceed that on the flat wall, while, when m = - 1, a < 0 and all other parameters 
take high values, the fluid pressure on the wavy wall lies below that on the flat wall. 
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